

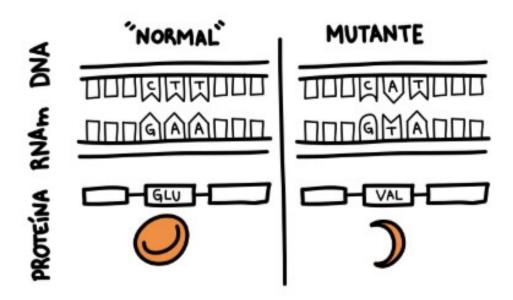
Mutações

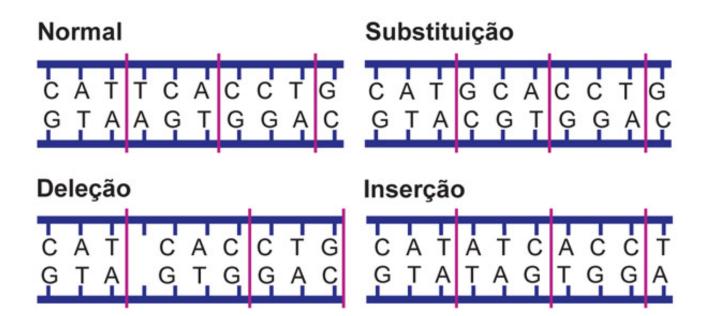
Prof Brunão Correia - 19/04/2023

Parte I - CARIÓTIPO HUMANO

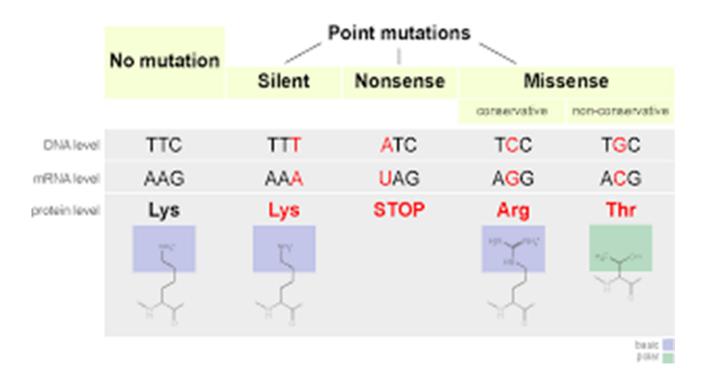
SERES HUMANOS 46 CROMOSSOMOS

MUTAÇÕES

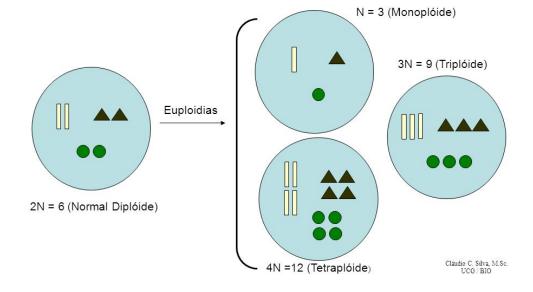




Parte II - MUTAÇÕES GÊNICAS



MUTAÇÕES PONTUAIS



Parte III - MUTAÇÕES CROMOSSÔMICAS NUMÉRICAS

EUPLOIDIAS	ANEUPLOIDIAS

ANEUPLOIDIAS AUTOSSÔMICAS

Nome comum	Tipo de aneuploidia	Fórmula cromossômica
Síndrome de Down	Trissomia do 21	47, XX ou XY + 21
Síndrome de Edwards	Trissomia do 18	47, XX ou XY + 18

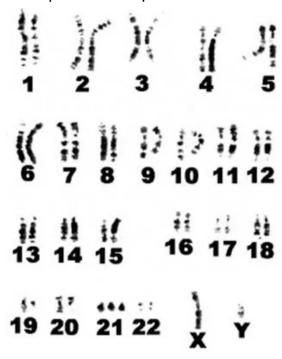
ANEUPLOIDIAS SEXUAIS

Nome comum	Tipo de aneuploidia	Fórmula cromossômica
Síndrome de Turner	Monossomia	45 + X0 (óvulo sem X + espermatozoide com X)
Síndrome de Klinefelter	Trissomia	47 + XXY (óvulo com XX + espermatozoide com Y)
Síndrome do triplo X	Trissomia	47 + XXX (óvulo com XX + espermatozoide com X)
Síndrome do duplo Y	Trissomia	47 + XYY (óvulo com X + espermatozoide com YY)
Ausência de X	Monossomia	45 + Y0 (óvulo sem X + espermatozoide com Y = inviável)

1. A cariotipagem é um método que analisa células de um indivíduo para determinar seu padrão cromossômico. Essa técnica consiste na montagem fotográfica, em sequência, dos pares de cromossomos e permite identificar um indivíduo normal (46, XX ou 46, XY) ou com alguma alteração cromossômica. A investigação do cariótipo de uma criança do sexo masculino com alterações morfológicas e comprometimento cognitivo verificou que ela apresentava fórmula cariotípica 47, XY, +18.

A alteração cromossômica da criança pode ser classificada como

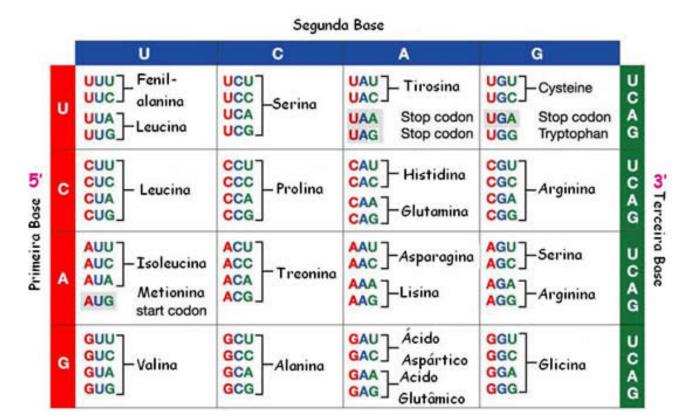
- A. estrutural, do tipo deleção.
- B. numérica, do tipo euploidia.
- C. numérica, do tipo poliploidia.
- D. estrutural, do tipo duplicação.
- E. numérica, do tipo aneuploidia.



2. O cariótipo humano abaixo representado apresenta uma dada alteração cromossômica.

Com relação a essa alteração, podemos afirmar que é uma:

- A) Aneuploidia autossômica.
- B) Euploidia sexual.
- C) Aneuploidia sexual.
- D) Monossomia.
- E) Doença metabólica.



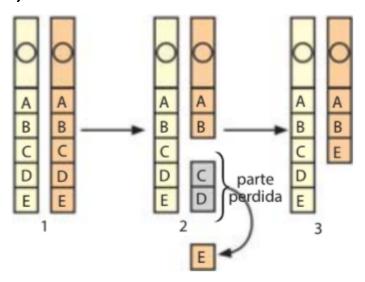
- 3. Digamos que uma mutação altere a sequência UAU para UAA. Ou seja, a terceira base que era U agora é A. Essa mutação pode ser chamada de:
 - A. Mutação silenciosa
 - B. Mutação de adição
 - C. Mutação de subtração
 - D. Mutação perda de sentido
 - E. Mutação sem sentido

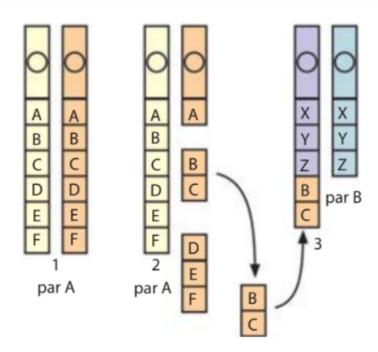
4. Os gametas humanos são haplóides formando um zigoto diplóide. As euploidias são alterações numéricas que podem se apresentar como triploidias ou tetraploidias. Assinale a alternativa que apresenta a correta associação da afirmação anterior com o número de cromossomos envolvidos:

Α.	Hapioide:	23	cromossomos,	Dibloide:	46	cromossomos,	Triploidia:	69
cromossomos, Tetraploidia: 92 cromossomos								
В.	Haplóide:	23	cromossomos,	Diplóide:	46	cromossomos,	Triploidia:	47
cromossomos, Tetraploidia: 48 cromossomos								
C.	Haplóide:	24	cromossomos,	Diplóide:	48	cromossomos,	Triploidia:	72
cromossomos, Tetraploidia: 96 cromossomos								
D	Hanlóide.	46	cromossomos	Diplóide:	23	cromossomos	Triploidia:	69

cromossomos, Tetraploidia: 92 cromossomos

E. Haplóide: 20 cromossomos, Diplóide: 40 cromossomos, Triploidia: 60 cromossomos, Tetraploidia: 80 cromossomos



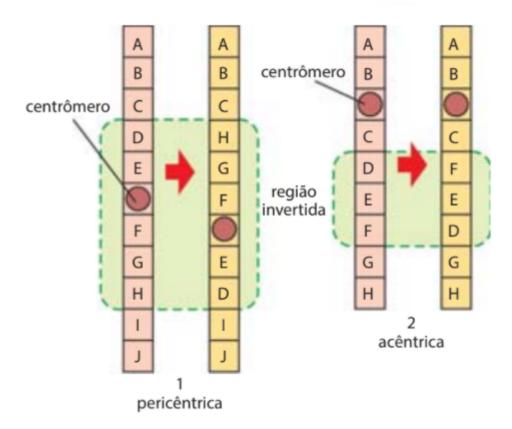

Parte IV - MUTAÇÕES CROMOSSÔMICAS ESTRUTURAIS

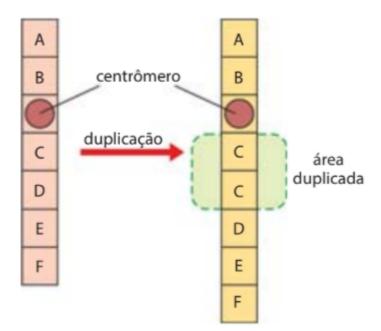
Vários agentes físicos, químicos e biológicos podem provocar rupturas nos cromossomos. Os fragmentos resultantes destas rupturas tendem a se unir novamente ao mesmo ou a outro cromossomo, resultando em cromossomos com falta ou excesso de um segmento. Pode ocorrer ainda que o segmento livre se solde ao mesmo cromossomo de maneira invertida, alterando somente a sequência dos genes.

Deleção

Translocação

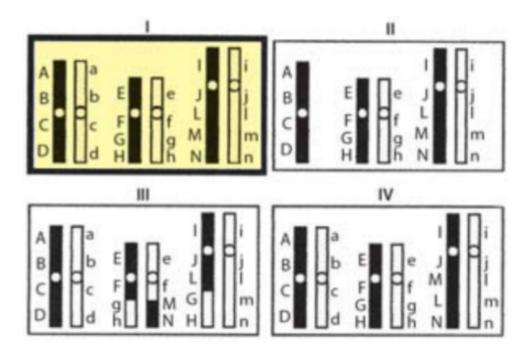
Inversão





Duplicação

Na figura a seguir, em I, temos uma célula diplóide 2n = 6 cromossomos. Em II, III e IV, temos exemplos, respectivamente, de:



- a) haploidia; translocação; inversão paracêntrica.
- b) haploidia; inversão pericêntrica; translocação.
- c) monossomia; translocação; inversão pericêntrica.
- d) monossomia; translocação; inversão paracêntrica.
- e) monossomia; inversão paracêntrica; translocação.

