

Soluções

Prof^a Flávia - 29/05/23

Fala galera! Nessa aula, vamos falar sobre:

- Coeficiente de solubilidade
- Tipos de soluções

Parte I - Coeficiente de solubilidade

Quantidade máxima de soluto que pode ser dissolvida numa dada quantidade de solvente.

g/L

Exemplos: em água a 20 °C (aumenta a $T \rightarrow aumenta a solubilidade$)

 $CH_3CH_2OH = \infty$

NaCl = 360 g/L

 $AgNO_3 = 2200 g/L$

 $BaCO_3 = 0,022 g/L$

Parte I - Tipos de soluções:

Considerando NaCl \rightarrow CS = 360 g/L

Solução insaturada: abaixo do coeficiente de solubilidade.
Solução diluída:
Solução concentrada:
Solução saturada: exatamente no coeficiente de solubilidade.
Solução supersaturada: um pouco acima do coeficiente de solubilidade (instável).
Precipitado (ppt): o que não dissolveu (sólido).

Parte III - interpretando a questão

ESCREVER POR EXTENSO AS RELAÇÕES

Exemplos:			
densidade da H ₂ O: 1 g cm ⁻³			
concentração de uma solução de HCl: 1 mol/L			
massa molar CO ₂ : 44 g mol ⁻¹			
transformar 80 g/L em mol/L (solução de NaOH)			

(ENEM 2014 PPL) Em um caso de anemia, a quantidade de sulfato de ferro(II) (FeSO₄, massa molar igual a 152 g/mol) recomendada como suplemento de ferro foi de 300 mg/dia. Acima desse valor, a mucosa intestinal atua como barreira, impedindo a absorção de ferro. Foram analisados cinco frascos de suplemento, contendo solução aquosa de FeSO₄, cujos resultados encontram-se no quadro.

Frasco	Concentração de sulfato de ferro(II) (mol/L)
1	0,02
2	0,20
3	0,30
4	1,97
5	5,01

Se for ingerida uma colher (10 mL) por dia do medicamento para anemia, a amostra que conterá a concentração de sulfato de ferro(II) mais próxima da recomendada é a do frasco de número

- A. 1.
- B. 2.
- C. 3.
- D. 4.
- E. 5.

(ENEM 2016) Para cada litro de etanol produzido em uma indústria de cana-de-açúcar são gerados cerca de 18 L de vinhaça que é utilizada na irrigação das plantações de cana-de-açúcar, já que contém teores médios de nutrientes N, P e K iguais a 357 mg/L, 60 mg/L e 2 034 mg/L, respectivamente.

SILVA, M. A. S.; GRIEBELER, N. P.; BORGES, L. C. Uso de vinhaça e impactos nas propriedades do solo e lençol freático. Revista Brasileira de Engenharia Agrícola e Ambiental, n. 1, 2007 (adaptado).

Na produção de 27 000 L de etanol, a quantidade total de fósforo, em kg, disponível na vinhaça será mais próxima de

- A. 1.
- B. 29.
- C. 60.
- D. 170.
- E. 1000.

(ENEM 2014) A utilização de processos de biorremediação de resíduos gerados pela combustão incompleta de compostos orgânicos tem se tornado crescente, visando minimizar a poluição ambiental. Para a ocorrência de resíduos de naftaleno, algumas legislações limitam sua concentração em até 30 mg/kg para solo agrícola e 0,14 mg/L para água subterrânea. resíduo foi realizada em diferentes ambientes, utilizando-se amostras de 500 g de solo e 100 mL de água, conforme apresentado no quadro.

Ambiente	Resíduo de naftaleno (g)
Solo I	1,0 × 10 ⁻²
Solo II	2,0 × 10 ⁻²
Água I	7.0×10^{-6}
Água II	8,0 × 10 ⁻⁶
Água III	9,0 × 10 ⁻⁶

O ambiente que necessita de biorremediação é o(a)

- A. solo I.
- B. solo II.
- C. água I.
- D. água II.
- E. água III.

Tarefas de casa:

- 1 Apostila capítulo 10, página 163
- 2 Aulas e exercícios do módulo "Introdução às Soluções Químicas"

