
Tabela Periódica

Prof^a Flávia - 16/03/23

Fala galera! Nessa aula, vamos falar sobre:

- Famílias
- Níveis eletrônicos
- Propriedades periódicas (eletronegatividade)

Parte I - Tabela Periódica Google

https://artsexperiments.withgoogle.com/periodic-table/

Parte II - Metais X Ametais

QUÍMICA

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS Com massas atômicas referidas ao isótopo 12 do Carbono

1										-							18
	7																
1 H 1,01	2											13	14	15	16	17	2 He 4,00
3 Li 6.94	4 Be											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16.0	9 F 19.0	10 Ne 20.2
11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 Al 27,0	14 Si 28,1	16 P 31,0	16 S 32,1	17 CI 35,5	15 Ar 39,9
19 K 39,1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.3	27 Co	28 Ni 58.7	29 Cu 63.5	30 Zn 65.4	31 Ga	32 Ge	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85,5	38 Sr 87,7	39 Y \$5.0	40 Zr 91.2	41 Nb 92,9	42 Mo 95,9	43 Tc (98)	44 Ru 101	45 Rh	46 Pd 106	47 Ag 108	48 Cd	49 In 115	50 Sn	51 Sb 122	52 Te	53 127	54 Xe
55 Cs 133	56 Ba	57-71 Série dos Lantanídios	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir 192	78 Pt 195	79 Au 197	80 Hg	81 TI 204	82 Pb 207	83 Bi	84 Po (209)	\$5 At (210)	\$6 Rn (222)
87 Fr (223)	88 Ra (226)	\$9-103 Série dos Actinídios	104 Rf	105 Db	106 Sg (266)	107 Bh	168 Hs	109 Mt (268)	110 Ds (271)	111 Rg (272)	112 Cn (285)	113 Nh	114 FI (259)	115 Mc (288)	116 Lv (293)	117 Ts	118 Og (294)
				dos Lan		,,,,,,		, ,,,,,,,			, ,,,,,			,,,,,,		,,,,,,	10000
úmero Atômico		57 La	58 Ce	es Pr	∞ Nd	61 Pm	62 Sm	Eu	64 Gd	f5 Tb	66 Dy	67 Ho	68 Er	Tm	⁷⁰ Yb	n Lu	
ímb	olo		Série	dos Acti	nídios	144	(145)	150	152	157	159	163	165	167	169	173	175
fassa Atômica) № de massa do ótopo mais estável		89 Ac (227)	90 Th	91 Pa 231	92 U 238	93 Np (237)	94 Pu (244)	96 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es	100 Fm (287)	101 Md (288)	102 No (259)	103 Lr (262)	

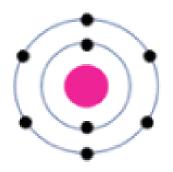
Obs.: Tabela periódica atualizada conforme IUPAC (sigla em inglês da União Internacional de Química Pura e Aplicada) Novembro de 2016. Essa versão atualizada inclui os elementos 113, 115, 117 e 118 com seus símbolos e massas atômicas, homologados em 28/11/2016.

LINHA - número de períodos ou níveis eletrônicos:

K (1º nível)

L (2º nível)

M (3º nível)


N (4º nível)

O (5º nível)

P (6º nível)

Q (7º nível)

exemplo: oxigênio

COLUNA - família ou grupo

*número de elétrons na camada de valência para elementos representativos

1																	18
1 H 1,01	2											13	14	15	16	17	2 He 4,00
3 Li 6.94	4 Be 9,01											5 B 10.8	6 C 12,0	7 N 14.0	8 O 16.0	9 F 19.0	10 Ne 20,2
11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 AI 27,0	14 Si 28,1	15 P 31,0	16 S 32,1	17 CI 35,5	18 Ar 39.9
19 K 39,1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52,0	25 Mn 54.9	26 Fe	27 Co	28 Ni 58.7	29 Cu 63.5	30 Zn 65.4	31 Ga 69.7	32 Ge	33 As 74,9	34 Se 79.0	35 Br 79.9	36 Kr 83,8
37 Rb 85.5	38 Sr 87,7	39 Y \$5.0	40 Zr 91.2	41 Nb 92,9	42 Mo 95,9	43 Tc	44 Ru 101	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 127	54 Xe
55 Cs 133	56 Ba	57-71 Série dos Lantanídios	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r 192	78 Pt	79 Au 197	80 Hg	81 TI 204	82 Pb	83 Bi 209	84 Po (209)	\$5 At (210)	\$6 Rn (222)
87 Fr (223)	88 Ra (226)	\$9-103 Série dos Actinídios	104 Rf (261)	105 Db	106 Sg (266)	107 Bh	108 Hs	109 Mt (268)	110 Ds (271)	111 Rg	112 Cn (285)	113 Nh (256)	114 FI (259)	115 Mc (258)	116 Lv (293)	117 Ts (294)	118 Og (294)
,,,,,	,,,,,,			dos Lan		,,,,,,,			,,,,,	, ,,,,,	1 40007	, , , , ,		, ,,,,,,		,,,,,	1,000
Número Atômico			57 La 139	58 Ce 140	59 Pr 141	60 Nd	61 Pm (145)	62 Sm 150	63 Eu	64 Gd 157	65 Tb	Dy 163	67 Ho	68 Er 167	69 Tm	70 Yb 173	71 Lu 175
Símb	olo			dos Acti			,,,,,,,,			,	1	1	1	1 - 2 - 1	1		1200
Massa Atômica () № de massa do sótopo mais estável			\$9 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (281)	99 Es (262)	100 Fm (267)	101 Md (268)	102 No (269)	103 Lr (262)

Obs.: Tabela periódica atualizada conforme IUPAC (sigla em inglês da União Internacional de Química Pura e Aplicada) Novembro de 2016. Essa versão atualizada inclui os elementos 113, 115, 117 e 118 com seus símbolos e massas atômicas, homologados em 28/11/2016.

(ENEM 2018) Na mitologia grega, Nióbia era a filha de Tantalo, dois personagens conhecidos pelo sofrimento. O elemento químico de número atômico (Z) igual a 41 tem propriedades químicas e físicas tão parecidas com as do elemento de número atômico 73 que chegaram a ser confundidos. Por isso, em homenagem a esses dois personagens da mitologia grega, foi conferido a esses elementos os nomes de nióbio (Z = 41) e tãntalo (Z = 73). Esses dois elementos químicos adquiriram grande importância econômica na metalurgia, na produção de supercondutores e em outras aplicações na indústria de ponta, exatamente pelas propriedades químicas e físicas comuns aos dois.

KEAN, S. A colher que desaparece: e outras histórias reais de loucura, amor e morte a partir dos elementos químicos. Rio de Janeiro: Zahar, 2011 (adaptado).

A importância econômica e tecnológica desses elementos, pela similaridade de suas propriedades químicas e físicas, deve-se a

- a. terem elétrons no subnível f
- b. serem elementos de transição interna.
- c. pertencerem ao mesmo grupo na tabela periódica.
- d. terem seus elétrons mais externos nos níveis 4 e 5, respectivamente.
- e. estarem localizados na família dos alcalinos terrosos e alcalinos, respectivamente.

Parte III - Propriedades periódicas

Raio atômico: "tamanho" do átomo

Fonte: Fonte da imagem: https://www.manualdaquimica.com/quimica-geral/elementos-quimicos-tabela-periodica.htm

Eletronegatividade: "vontade" de ganhar elétrons

Eletronegatividade

 $Fonte: Fonte \ daimagem: https://www.manualdaquimica.com/quimica-geral/elementos-quimicos-tabela-periodica.htm$

(ENEM 2017) No ar que respiramos existem os chamados "gases inertes". Trazem curiosos nomes gregos, que significam "o Novo", "o Oculto", "o Inativo". E de fato são de tal modo inertes, tão satisfeitos em sua condição, que não interferem em nenhuma reação química, não se combinam com nenhum outro elemento e justamente por esse motivo ficaram sem ser observados durante séculos: só em 1962 um químico, depois de longos e engenhosos esforços, conseguiu forçar "o Estrangeiro" (o xenônio) a combinar-se fugazmente com o flúor ávido e vivaz, a façanha pareceu tão extraordinária que lhe foi conferido o Prêmio Nobel.

LEVI, P. A tabela periódica. Rio de Janeiro: Relume-Dumará, 1994 (adaptado)

Qual propriedade do flúor justifica sua escolha como reagente para o processo mencionado?

- a. Densidade.
- b. Condutância.
- c. Eletronegatividade.
- d. Estabilidade nuclear.
- e. Temperatura de ebulição.

Tarefas de casa:

1 - Módulo Tabela Periódica

Resumo que SALVA!

